Treatments at the Wheel/Rail Interface to Reduce Rail Transit Noise

Hugh Saurenman, Ph.D., P.E.

hsaurenman@atsconsulting.com

ATS Consulting

215 N. Marengo Avenue, Suite 100

Pasadena, CA 91101

(626) 710-4400

Tools for Reducing Wheel/Rail

Hugh Saurenman, Ph.D., P.E.

hsaurenman@atsconsulting.com

ATS Consulting

215 N. Marengo Avenue, Suite 100

Pasadena, CA 91101

(626) 710-4400

Los Angeles Rail Transit in 1930's

Current Transit Projects in LA County

Project	Cost	Туре	Status
Metro Orange Line Extension	\$182M	BRT	Under construction
Crenshaw/LAX Transit Corridor	\$1.21B	LRT	Design Build RFP stage
Regional Connector Transit Corridor	\$1.4B	LRT	Design Build RFP stage
Exposition LRT Project Phase 1		LRT	Opened in May 2012
Exposition LRT Project Phase 2	\$925M	LRT	Under construction
Gold Line Foothill Extension Ph. 1	\$735M	LRT	Under construction
Gold Line Foothill Extension Ph. 2		LRT	Environmental review
Eastside Transit Corridor Phase 2	\$1.27B	LRT	Environmental review
Green Line Extension to LAX	\$200M	LRT	Alternatives Analysis
Sepulveda Pass Transit Corridor	\$1.08B	RT	Initial Planning
South Bay Green Line Extension	\$272M	LRT	Environmental review
West Santa Ana Transit Corridor	\$240M	Undef	Alternatives Analysis
Westside Subway Extension	\$4.07B	RT	Preliminary Engineering

Modern Urban Rail Transit Systems*

Western North America				
City/Region	Туре			
Calgary	Light rail			
Denver	Light rail			
Edmonton	Light rail			
Honolulu	Rapid transit			
Los Angeles	Rapid transit and LRT			
Phoenix	Light rail			
Portland, OR	Light rail			
Sacramento	Light rail			
Salt Lake City	Light rail			
San Diego	Light rail			
San Jose	Light rail			
Seattle	Light rail			
SF Bay Area	Rapid transit and LRT			
Vancouver	Light rail			

Eastern North America			
City/Region	Туре		
Atlanta	Rapid transit		
Baltimore	Rapid transit and LRT		
Buffalo	Light rail		
Charlotte	Light rail		
Dallas	Light rail		
Houston	Light rail		
New Jersey,	Light rail		
Miami	Rapid transit		
Minneapolis	Light rail		
Norfolk, VA	Light rail		
St. Louis	Light rail		
San Juan	Rapid transit		
Toronto	Rapid transit and LRT		
Wash., DC	Rapid transit		

Clearly noise is an issue for both new and existing systems

Questions are:

- What can be done other than put up sound walls?
- As systems age, will noise increase?
- What tools are available to reduce noise at the wheel/rail interface?
 - Monitoring track and wheel condition
 - Improved maintenance procedures
 - Wheel and track treatments (e.g. tuned vibration dampers)
- How big a difference will treatments make?

Definitions

- Potential wheel/rail noise sources
 - Rolling noise
 - Squeal from slip-stick interaction on rail head, flange/gauge face contact, restraining rail or guard rail contact
 - o Impacts at frogs, joints, bad welds, wheel flats

Roughness

- Random roughness plus periodic roughness (corrugation)
- Mathematical models assume:

$$SPL = ... + 10 \log \left[\left(\frac{\rho c \omega}{p_0} \right) H_{cp}(k) \varphi_{mR}(k) \Delta k \right]$$

where ϕ mR(k) is the combined wheel and rail roughness (Remington, et. al., 1974).

"Roughness" Any longitudinal irregularity in rail surface

Random Roughness


```
frequency = speed/wavelength
= 17.9 \times speed(mph)/wavelength(inches)
= 447 \times speed(mph)/wavelength(mm)
```


"Roughness" Any longitudinal irregularity in rail surface

Corrugation


```
frequency = speed/wavelength
= 17.9 \times speed(mph)/wavelength(inches)
= 447 \times speed(mph)/wavelength(mm)
```


"Roughness" Any longitudinal irregularity in rail surface

Combined Corrugation and Random

Tools for Evaluating Noise

- On-board noise measurements to identify problem areas
- Detailed measurements at selected sites
 - Community noise
 - Rail roughness
 - Noise at 1m from near rail
 - Rail vibration decay rate
 - Rail Input Impedance
- Wheel input impedance

On-Board Noise Measurements

On-Board Noise Measurement, 2003

acoustics, transportation + strategy

On-board Noise Measurement

Station to Station

Area of Interest

"Corrugation" from Rail Grinding

Rail Roughness Measurements

Rail Roughness Measurements

Measure vertical displacement in wear band over a small track section (typically 100 to 300m)

Average Roughness, 1/3 Octave Band Spectra

Derived Roughness "Coefficient"

Roughness Spectrogram, Site 3

Roughness Spectrogram, Site 4

Close Proximity (1m) Noise Measurements

Is Noise from Wheel or Rail?

Example 1: Sound Transit Embedded track

Is Noise from Wheel or Rail?

Example 2: Sound Transit Aerial Structure

Conclusion from Close Proximity Measurements:

- Embedded track noise is dominated by noise radiated off of wheel
- Aerial structure noise is dominated by noise radiated off of rail
- Rail dampers may be effective at reducing noise on aerial structure

San Diego Trolley, the Right Way to Reduce Noise

- Environmental studies for Mid-Coast Corridor
- 11 Mile extension to San Diego Trolley from Old Town to University City
- Originally studied in early '90s.
- Projected:
 - o Start of Construction: 2015
 - o Operations: 2018

Noise Testing for Environmental Assessment

- Four locations, three ballast & tie, one aerial structure
- Three vehicle types
 - U2 and SD100 (high floor)
 - S70 (low floor)
 - US-S70 (low floor)
- Measurements:
 - Wayside noise
 - Train speed
 - Rail roughness

Site 2: Riverwalk Golf Course

Final San Diego Trolley Results

Cito Trook Type		Lmax, dBA		
Site	Track Type	S70/US-70	SD100	
1	Ballast & Tie		77	
2	Ballast & Tie	74		
3	Ballast & Tie	73	75	

- Values normalized to 40 mph, 50 ft from track centerline, and 2-car trains.
- ☐ FTA suggested reference level: 77 dBA, 40 mph, 50 ft, single car, ballast & tie track.
- ☐ Equivalent levels on other LRT systems as high as 83 dBA.

Bottom Line for Mid-Coast Analysis

- Justified using a reference level of 75 dBA
- 2 dB lower than FTA recommendation
- Substantially lower than recently measured on similar LRT systems.
- Amount of noise mitigation (sound walls) substantially reduced.
- Lower reference level might be reasonable.

Overall Conclusions

- Tools are available for analyzing rolling noise
- Relatively simple measurements can lead to insights on where treatments are needed and what treatments will work
- Proper maintenance will result in lower noise levels
 - Specification is needed for rail grinding
 - Problem areas can be identified with on-board measurements
 - Problem wheels need to be identified and trued
- If San Diego Trolley can have low noise levels, why not all other transit systems?

